Argonning birikmalari
Argonning birikmalari- argon elementini o'z ichiga olgan kimyoviy birikmalar, argon atomining inertligi tufayli kamdan-kam uchraydi. Shu bilan birga, argon birikmalari inert gaz matritsasi izolyatsiyasida, sovuq gazlar va plazmalarda aniqlangan va argonni o'z ichiga olgan molekulyar ionlar yaratilgan va kosmosda ham aniqlangan.
1 ) ArH + [1]
2 ) ArN2O+
3 ) ArHCO +
4 ) ArCO+2
5 ) ArBeO
bularning kelib chiqishiga sabab tashqi qavatdagi elektron hisobiga hosil bo'lgan yani oxirgi elektronini berish va olish jaroyini natijasida yangi birikmalar vujudga kelgan.
Ushbu reaksiyalar davomida Ar ning birikmalari olinadi.
a Ar + H + H → ArH + + H [2].
b ArH + + e - → ArH* → Ar + H [2].
c Ar + N+</br> N → ArN+</br> ArN photodissociation → Ar + + N 2 .[3].
d.O 2 + hv → O+</br> O + e - ; O+</br> O + e - → 2O*; O* + Ar → ArO* [4].
e ArH + + CO → ArHCO + [5].
Manbalar
[tahrir | manbasini tahrirlash]- ↑ Berman, Michael; Kaldor, Uzi; Shmulovich, J.; Yatsiv, S. (December 1981). „Rydberg states and the observed spectrum of ArH“. Chemical Physics. 63-jild, № 1–2. 165–173-bet. Bibcode:1981CP.....63..165B. doi:10.1016/0301-0104(81)80318-7.
- ↑ 2,0 2,1 Schilke, P.; Neufeld, D. A.; Müller, H. S. P.; Comito, C.; Bergin, E. A.; Lis, D. C.; Gerin, M.; Black, J. H.; Wolfire, M. (4 June 2014). „Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas“. Astronomy & Astrophysics. 566-jild. A29-bet. arXiv:1403.7902. Bibcode:2014A&A...566A..29S. doi:10.1051/0004-6361/201423727.
- ↑ Theis, Riley A.; Fortenberry, Ryan C. (March 2016). „Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields“. Molecular Astrophysics. 2-jild. 18–24-bet. Bibcode:2016MolAs...2...18T. doi:10.1016/j.molap.2015.12.001.
- ↑ Laarmann, T.; Wabnitz, H.; von Haeften, K.; Möller, T. (2008). „Photochemical processes in doped argon-neon core-shell clusters: The effect of cage size on the dissociation of molecular oxygen“ (PDF). The Journal of Chemical Physics. 128-jild, № 1. 014502-bet. Bibcode:2008JChPh.128a4502L. doi:10.1063/1.2815798. PMID 18190199.
- ↑ Seki, Kouji; Sumiyoshi, Yoshihiro; Endo, Yasuki (2002). „Pure rotational spectra of the Andoza:Chem and the Andoza:Chem ionic complexes“. The Journal of Chemical Physics. 117-jild, № 21. 9750-bet. Bibcode:2002JChPh.117.9750S. doi:10.1063/1.1518025.
Havolalar
[tahrir | manbasini tahrirlash]- Linnartz, H.; Verdes, D.; Maier, J. P. (16 August 2002). „Rotationally Resolved Infrared Spectrum of the Charge Transfer Complex [Ar–N2]+ Supporting Online Material Observed frequencies and observed-calculated values of rotational transitions in the 2Σ+ ground state of [ArN2]+ upon excitation of the NN stretching fundamental“. Science. 297-jild, № 5584. 1166–1167-bet. Bibcode:2002Sci...297.1166L. doi:10.1126/science.1074201. PMID 12183626.
- Nonose, Naoko S.; Matsuda, Naoki; Fudagawa, Noriko; Kubota, Masaaki (1994). „Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry“. Spectrochimica Acta Part B: Atomic Spectroscopy. 49-jild, № 10. 955-bet. Bibcode:1994AcSpe..49..955N. doi:10.1016/0584-8547(94)80084-7.
- Jiménez Redondo, Miguel; Cueto, Maite; Doménech, José Luis; Tanarro, Isabel; Herrero, Víctor J. (2014). „Ion kinetics in Ar/H2 cold plasmas: The relevance of ArH+“. RSC Adv. 4-jild, № 107. 62030–62041-bet. Bibcode:2014RSCAd...462030J. doi:10.1039/C4RA13102A. PMC 4685740. PMID 26702354.