Dyakonov sirt to'lqini

Vikipediya, ochiq ensiklopediya

Dyakonov sirt to'lqinlari ( DSWs - Dyakonov surface waves) - bu izotrop va bir o'qli-ikkilantirib sindiruvchi muhit o'rtasidagi chegara(interfeys) bo'ylab tarqaladigan sirt elektromagnit to'lqinlari . Ular nazariy jihatdan 1988-yilda rus fizigi Mixail Dyakonov tomonidan bashorat qilingan. [1] Boshqa turdagi akustik va elektromagnit sirt to'lqinlaridan farqli o'laroq, DSW ning mavjudligi tutashuvchi muhitlarning simmetriyasidagi farq bilan bog'liq. U izotrop o'tkazuvchi muhit va anizotrop bir o'qli kristal o'rtasidagi interfeysni ko'rib chiqdi va ma'lum sharoitlarda interfeysda lokalizatsiya qilingan to'lqinlar mavjud bo'lishi kerakligini ko'rsatdi. Keyinchalik, shunga o'xshash to'lqinlar turli yo'nalishdagi ikkita bir xil bir o'qli kristallar orasidagi interfeysda mavjud bo'lishi taxmin qilingan. [2] Ilgari ma'lum bo'lgan elektromagnit sirt to'lqinlari, sirt plazmonlari va sirt plazmon polaritonlari interfeysni tashkil etuvchi materiallardan birining o'tkazuvchanligi manfiy bo'lsa, ikkinchisining musbat bo'lishi sharti bilan mavjud bo'ladi (masalan, plazma chastotasidan quyida havo/metall interfeysi uchun). Bundan farqli o'laroq, DSW ikkala material ham shaffof bo'lganda tarqalishi mumkin; shuning uchun ular deyarli yo'qotishlarga uchramaydi, bu ularning jalb qiluvchi jihatidir.

So'nggi yillarda DSWning ahamiyati va potensiali ko'plab tadqiqotchilarning e'tiborini tortdi: ikkala tutashgan materiallardan birining yoki ikkalasining tarkibiy xususiyatlarining o'zgarishi, masalan, har qanday kimyoviy yoki biologik agentning infiltratsiyasi tufayli - to'lqinning xususiyatlarini o'lchovli o'zgartirish mumkin. Binobarin, ko'plab potensial tajribalar, jumladan, integratsiyalashgan optika, kimyoviy va biologik sirtni zondlash uchun qurilmalar va boshqalar ko'zda tutilgan [3] Biroq, DSW uchun zarur shart-sharoitlarni hosil qilish oson emas va shuning uchun DSW ning birinchi prinsipial eksperimental kuzatuvi [4] dastlabki bashoratdan atigi 20 yil o'tgach amalga oshirildi.

Ushbu hodisaning turli jihatlari bilan bog'liq ko'plab nazariy ishlar paydo bo'ldi, batafsil sharhga qarang. [5] Xususan, DSW ning magnit interfeyslarda, [6] chap qoʻl, [7] elektro-optik, [8] [9] va chiral [10] materiallarda tarqalishi oʻrganildi. Prizmalardan foydalangan holda tuzilmalarda DSW tufayli rezonans o'tkazish bashorat qilingan [11] va DSW va sirt plazmonlari (Dyakonov plazmonlari) o'rtasidagi birikma va o'zaro ta'sir [12] [13] [14] o'rganilgan va kuzatilgan. [15] [16]

Fizik xususiyatlar[tahrir | manbasini tahrirlash]

1-havolada ko'rib chiqilgan eng oddiy konfiguratsiya. o'tkazuvchanligi ε bo'lgan izotrop material va oddiy va g'ayrioddiy to'lqinlar uchun mos ravishda ε0 va εe o'tkazuvchanlikka ega bo'lgan bir o'qli kristall orasidagi interfeysdan iborat. Kristal C o'qi interfeysga parallel. Ushbu konfiguratsiya uchun εe > ε > ε0 sharti bajarilgan taqdirda, DSW C o'qiga nisbatan ma'lum burchak oraliqlari ichida interfeys bo'ylab tarqalishi mumkin. Shunday qilib, DSW faqat musbat ikkilantirib sindiruvchi kristalli interfeyslar tomonidan yezaga keladi( εe > ε0 ). Burchak oralig'i quyidagi parametr bilan belgilanadi

.

DSW fazaviy va guruhiy tezligi ( Δθph va Δθgr ) uchun burchak intervallari boshqacha. Faza tezligi oralig'i η2 ga proportsional va hatto eng kuchli ikkilantirib sindiruvchi tabiiy kristallar uchun juda tor Δθph ≈ 1° ( rutil ) va Δθph ≈ 4° ( kalomel ). [17] Biroq, fizik jihatdan muhimroq bo'lgan guruh tezligi oralig'i sezilarli darajada kattaroqdir ( η ga mutanosib). Hisoblar rutil uchun Δθgr ≈ 7°, kalomel uchun Δθgr ≈ 20° ni beradi.

Perspektivlar[tahrir | manbasini tahrirlash]

DSW muvaffaqiyatli tarqalishi uchun zarur bo'lgan qattiq anizotropiya shartlari, xususan, tarkibiy materiallardan kamida bittasining yuqori darajadagi ikkilantirib sindirishi va tabiiy ravishda mavjud bo'lgan ushbu talablarga javob beradigan materiallar soni bilan cheklanganligi tufayli DSW material tizimlarining keng ko'lamda eksperimental tekshiruvi va tegishli amaliy qurilmalarning evolyutsiyasi cheklangan. Biroq, bu yangi sun'iy muhandislik metamateriallari [18] va inqilobiy materiallar sintezi texnikasi asosida o'zgaradi.

DSW ning anizotropiyaga va shu tariqa ta'sirga o'ta sezgirligi, ularning yo'qotish xususiyati kamligi (uzoq masofa) bilan birga, ularni keyingi avlod yuqori tezlikda uzatish va o'qish texnologiyalari uchun yuqori sezgirlikdagi taktil va ultratovushli sezgirlikni ta'minlash uchun ayniqsa jozibador qiladi. . Bundan tashqari, DSW ni noyob yo'nalish - optik signallarni boshqarish uchun ishlatish mumkin. [19]

Shuningdek qarang[tahrir | manbasini tahrirlash]

  • Dyakonov-Voigt to'lqini
  • Sirt to'lqini
  • Oqish rejimi [20]

Havolalar[tahrir | manbasini tahrirlash]

  1. Dyakonov, M. I. (April 1988). "New type of electromagnetic wave propagating at an interface" (Free PDF download). Soviet Physics JETP 67 (4): 714. Archived from the original on 2018-07-13. https://web.archive.org/web/20180713161426/http://www.jetp.ac.ru/cgi-bin/dn/e_067_04_0714.pdf. Qaraldi: 2023-06-12. Dyakonov sirt to'lqini]]
  2. Averkiev, N. S. and Dyakonov, M. I. (1990). "Electromagnetic waves localized at the interface of transparent anisotropic media". Optics and Spectroscopy (USSR) 68 (5): 653. 
  3. Torner, L., Artigas, D., and Takayama, O. (2009). "Dyakonov Surface Waves". Optics and Photonics News 20 (12): 25. doi:10.1364/OPN.20.12.000025. 
  4. Takayama, O., Crassovan, L., Artigas D., and Torner, L. (2009). "Observation of Dyakonov Surface Waves" (Free PDF download). Phys. Rev. Lett. 102 (4): 043903. doi:10.1103/PhysRevLett.102.043903. PMID 19257419. https://scholar.google.com/scholar?hl=en&q=Observation+of+Dyakonov+Surface+Waves&btnG=&as_sdt=1%2C22&as_sdtp=. 
  5. Takayama, O., Crassovan, L. C., Mihalache, D., and Torner, L. (2008). "Dyakonov Surface Waves: A Review". Electromagnetics 28 (3): 126–145. doi:10.1080/02726340801921403. https://archive.org/details/sim_electromagnetics_2008-04_28_3/page/n5. 
  6. Crassovan, L. C., Artigas, D., Mihalache, D., and Torner, L. (2005). "Optical Dyakonov surface waves at magnetic interfaces". Opt. Lett. 30 (22): 3075–7. doi:10.1364/OL.30.003075. PMID 16315726. 
  7. Crassovan, L. C., Takayama, D., Artigas, D., Johansen, S. K., Mihalache, D., and Torner, L. (2006). "Enhanced localization of Dyakonov-like surface waves in left-handed materials". Phys. Rev. B 74 (15): 155120. doi:10.1103/PhysRevB.74.155120. 
  8. Nelatury, S. R., Polo jr., J. A., and Lakhtakia, A. (2008). "Electrical Control of Surface-Wave Propagation at the Planar Interface of a Linear Electro-Optic Material and an Isotropic Dielectric Material". Electromagnetics 28 (3): 162–174. doi:10.1080/02726340801921486. https://archive.org/details/sim_electromagnetics_2008-04_28_3/page/162. 
  9. Nelatury, S. R., Polo jr., J. A., and Lakhtakia, A. (2008). "On widening the angular existence domain for Dyakonov surface waves using the Pockels effect". Microwave and Optical Technology Letters 50 (9): 2360–2362. doi:10.1002/mop.23698. 
  10. Gao, Jun; Lakhtakia, Akhlesh; Lei, Mingkai (2009). "On Dyakonov-Tamm waves localized to a central twist defect in a structurally chiral material". Journal of the Optical Society of America B 26 (12): B74–B82. doi:10.1364/JOSAB.26.000B74. 
  11. Takayama, O., Nikitin, A. Yu., Martin-Moreno, L., Mihalache, D., Torner, L., and Artigas, A. (2011). "Dyakonov surface wave resonant transmission". Optics Express 19 (7): 6339–47. doi:10.1364/OE.19.006339. PMID 21451661. https://digital.csic.es/bitstream/10261/47330/1/430E4346-9F34-E268-395ED8DFA9217494_210915.pdf. 
  12. Guo, Yu.. Newman, W., Cortes, C. L. and Jacob, Z. (2012). "Review Article: Applications of Hyperbolic Metamaterial Substrates". Advances in OptoElectronics 2012: 1–9. doi:10.1155/2012/452502. 
  13. Jacob, Z. and Narimanov, E. E. (2008). "Optical hyperspace for plasmons: Dyakonov states in metamaterials". Appl. Phys. Lett. 93 (22): 221109. doi:10.1063/1.3037208. 
  14. Takayama, O., Artigas, D., and Torner, L. (2012). "Coupling plasmons and dyakonons". Optics Letters 37 (11): 1983–5. doi:10.1364/OL.37.001983. PMID 22660095. 
  15. Takayama, O., Shkondin, E., Bogdanov A., Panah, M. E., Golenitskii, K., Dmitriev, P., Repän, T., Malureanu, R., Belov, P., Jensen, F., and Lavrinenko, A. (2017). "Midinfrared surface waves on a high aspect ratio nanotrench platform". ACS Photonics 4 (11): 2899–2907. doi:10.1021/acsphotonics.7b00924. https://backend.orbit.dtu.dk/ws/files/138578323/acsphotonics.7b00924.pdf. 
  16. Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bogdanov A., and Lavrinenko, A. (2018). "Experimental observation of Dyakonov plasmons in the mid-infrared". Semiconductors 52 (4): 442–6. doi:10.1134/S1063782618040279. 
  17. Takayama, O.; Crasovan, L. C., Johansen, S. K.; Mihalache, D, Artigas, D.; Torner, L. (2008). "Dyakonov Surface Waves: A Review.". Electromagnetics 28 (3): 126–145. doi:10.1080/02726340801921403. https://archive.org/details/sim_electromagnetics_2008-04_28_3/page/126. 
  18. Takayama, O.; Bogdanov, A. A., Lavrinenko, A. V. (2017). "Photonic surface waves on metamaterial interfaces.". Journal of Physics: Condensed Matter 29 (46): 463001. doi:10.1088/1361-648X/aa8bdd. PMID 29053474. 
  19. Takayama, O.; Artigas, D., Torner, L. (2014). "Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves.". Nature Nanotechnology 9 (6): 419–424. doi:10.1038/nnano.2014.90. PMID 24859812. 
  20. Liu, Hsuan-Hao; Chang, Hung-Chun (2013). "Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials.". IEEE Photonics Journal 5 (6): 4800806. doi:10.1109/JPHOT.2013.2288298.