Kontent qismiga oʻtish

Eng katta afeliyga ega bo‘lgan obyektlar bo‘yicha quyosh tizimidagi jismlar ro‘yxati

Vikipediya, erkin ensiklopediya
The orbit of Sedna lies well beyond these objects, and extends many times their distances from the Sun
The orbit of Sedna (red) set against the orbits of outer Solar System objects (Pluto's orbit is purple).

Bu ro‘yxat Quyosh tizimi obyektlarining eng katta afeliyiga ega bo‘lgan obyektlar ro‘yxatidir. Agar Quyosh va obyekt olamdagi yagona jismlar bo‘lsa, orbitasi uni Quyoshdan eng uzoqqa olib borishi mumkin bo‘lgan masofa. Bu obyektlar faqat Quyoshni ikki jismli tizimda aylanayotganini anglatadi, yaʼni planetalar, o‘tib ketayotgan yulduzlar yoki galaktikaning ta’siri hisobga olinmayotgani anglatadi. Afeliy, planetalar va boshqa yulduzlarning gravitatsion ta’siri natijasida sezilarli darajada o‘zgarishi mumkin. Ushbu obyektlarning ko‘pi hisoblangan orbitada harakatlanayotgan kometalar bo‘lib, ular bevosita kuzatilmasligi mumkin.[1] Misol uchun, Hale-Bopp kometasi 2013-yilda magnituda 24[2] da oxirgi marta kuzatildi va hali ham so‘nishni davom ettirmoqda, bu esa uni faqat eng kuchli teleskoplar yordamida ko‘rish imkonini beradi.

Quyoshning gravitatsion maydoni eng kuchli ta’sir qiladigan hudud, ya'ni Hill sharlari, 1960-yillarda olib borilgan hisob-kitoblarga ko‘ra, 230,000 AU (3,6 yy)gacha kengayishi mumkin.[3] Ayrim kometalar hozirda Quyoshdan 150,000 AU (2 yy)dan uzoqlashgan bo‘lsa, ular yulduzlararo makonga yo‘qolgan deb hisoblanishi mumkin. Ma’lum bo‘lgan eng yaqin yulduz — Proxima Centauri, uning masofasi 269,000 AU (4,25 yy)[4]ni tashkil etadi, undan keyin esa Alpha Centauri joylashgan bo‘lib, uning masofasi taxminan 4,35 yorug‘lik yili.[4]

Oort bulutidagi kometalarning orbitasi Quyosh atrofida katta masofalarga cho‘ziladi, ammo o‘tib ketayotgan yulduzlar va galaktik to‘lqinlar ularni ta’sir qilib, orbitasini o‘zgartirishi mumkin.[5] Ichki Quyosh tizimiga kirib yoki undan chiqib ketayotganda, ular sayyoralar ta’sirida orbitasini o‘zgartirishi yoki Quyosh tizimidan chiqarilishi mumkin.[5]Shuningdek, ular Quyosh yoki biror sayyora bilan to‘qnashishi ham mumkin.[5]

S/2021 N 1 (Neptunning eng uzoqdagi yoʻldoshi) Neptun atrofida 27 yildan koʻproq vaqt ichida aylanadi, kometalar esa Quyosh atrofida aylanib yetishishi uchun 30 million yillargacha vaqt olishi mumkin, va Quyosh Galaktika atrofida 230 million yil ichida (galaktik yil) aylanib chiqadi.

Yoʻldoshlarning orbital davri yoki markaziy qismining orbital davri
Yoʻldosh Orbital davr
(years)
Markaziy qism Markaziy qismni orbital davrining foizi
S/2021 N 1 27.4 Neptun 16.6%
Oort buluti kometasi 30 million Quyosh 13%
Quyosh 230 million Somon yoʻli N/A

Barytsentrik va Geliosentrik orbitalar

[tahrir | manbasini tahrirlash]
Quyosh tizimi barytsentrining Quyosh atrofidagi harakati.

Ko‘plab quyidagi ro‘yxatda keltirilgan obyektlar Quyosh tizimidagi eng g‘ayrioddiy orbitalarga ega bo‘lib, ularning harakati vaqtga bogʻliq boʻlganligi uchun ularning orbitasini aniq tasvirlash qiyin. Ko‘plab obyektlar uchun heliotsentrik maʼlumotlar bazasi (Quyoshning gravitatsion markaziga nisbatan) ularning orbitasini tushunish uchun yetarli hisoblanadi. Biroq, obyektlarning orbitalari Quyosh tizimining chiqish tezligiga yaqinlashganida, yaʼni yuzlab yoki minglab yillar davom etadigan uzoq orbitalar mavjud bo‘lsa, ularning orbitasini tasvirlash uchun boshqacha maʼlumotlar bazasi talab qilinadi: barysentrik maʼlumotlar bazasi. Barysentrik maʼlumotlar bazasi asteroiddan uning orbita markazini faqat Quyoshdan emas, balki butun Quyosh tizimining gravitatsion markaziga nisbatan o‘lchaydi. Asosan tashqi gaz gigantlarining taʼsiri tufayli, Quyosh tizimi barysentrining joylashuvi quyosh radiusining ikki baravarigacha o‘zgarishi mumkin.

Bu farq uzoq davrli kometalar va uzoq masofadagi asteroidlarning orbitalarida sezilarli o‘zgarishlarga olib kelishi mumkin. Ko‘plab kometalar heliotsentrik maʼlumotlar bazasida giperkubik (bog‘lanmagan) orbitaga ega bo‘lsa-da, barysentrik maʼlumotlar bazasida ularning orbitalari ancha mustahkam bog‘langan bo‘ladi, faqat bir nechta kometalar haqiqatan ham giperkubik orbitada qoladi.

Orbitaning aylanadan og‘ishi(Essentriklik) va Vinf

[tahrir | manbasini tahrirlash]

Orbita parametri, obyektning orbitasi necha darajada doiraviy emasligini tasvirlash uchun ishlatiladigan parametr – essentriklik (e). e=0 bo‘lgan obyektning orbita mukammal doiraviy bo‘lib, uning perihelion masofasi afelion masofasi bilan bir xil bo‘ladi, yaʼni, Quyoshga eng yaqin nuqtasi ham, eng uzoq nuqtasi ham bir xil masofada joylashadi. e qiymati 0 va 1 orasida bo‘lgan obyekt elliptik orbitaga ega bo‘ladi. Masalan, e=0.5 bo‘lgan obyektning perihelion masofasi afelion masofasidan ikki barobar yaqin bo‘ladi. Agar obyektning e qiymati 1 ga yaqinlashsa, uning orbita shakli tobora cho‘zilib boradi va e=1 bo‘lganida obyektning orbitasi parabolik bo‘lib, Quyosh tizimiga bog‘lanmagan holatga keladi (yaʼni, u boshqa orbitaga qaytmaydi). Agar e 1 dan katta bo‘lsa, orbita giperkubik bo‘ladi va u ham Quyosh tizimiga bog‘lanmagan bo‘ladi.



Comets with greatest aphelion (2 body heliocentric)

[tahrir | manbasini tahrirlash]
C/1910 A1 during its 1910 close approach
Proxima Centauri is 271,000 AU or 4.25 light years away

Andoza:Sticky header

Distant comets with long observation arcs and/or barycentric

[tahrir | manbasini tahrirlash]
Comet West in 1976

Examples of comets with a more well-determined orbit. Comets are extremely small relative to other bodies and hard to observe once they stop outgassing (see Coma (cometary)). Because they are typically discovered close to the Sun, it will take some time even thousands of years for them to actually travel out to great distances. The Whipple proposal might be able to detect Oort cloud objects at great distances, but probably not a particular object.

Minor planets

[tahrir | manbasini tahrirlash]

Andoza:Bar graph

A large number of trans-Neptunian objects (TNOs) – minor planets orbiting beyond the orbit of Neptune – have been discovered in recent years. Many TNOs have orbits that take them far beyond Pluto's aphelion of 49.3 AU. Some of these TNOs with an extreme aphelion are detached objects such as 2010 GB174, which always reside in the outermost region of the Solar System, while for other TNOs, the extreme aphelion is due to an exceptionally high eccentricity such as for 2005 VX3, which orbits the Sun at a distance between 4.1 (closer than Jupiter) and 2200 AU (70 times farther from the Sun than Neptune). The following is a list of minor planets with the largest aphelion in descending order.[16]

Minor planets with a heliocentric aphelion greater than 400 AU

[tahrir | manbasini tahrirlash]

Greatest barycentric aphelion

[tahrir | manbasini tahrirlash]

The following asteroids have an incoming barycentric aphelion of at least 1000 AU.

The orbit of Andoza:Dp, 2012 VP113, Leleākūhonua, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned with the hypothetical Planet Nine while the blue-colored eTNO orbits are anti-aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200 AU.
About comets
Objects of interest
Others
  1. 1,0 1,1 JPL Small-Body Database Search Engine: Q > 20000 (au)
  2. „C/1995 O1 (Hale-Bopp)“. Minor Planet Center. Qaraldi: 2018-yil 14-mart.
  3. Chebotarev, G.A. (1964), „Gravitational Spheres of the Major Planets, Moon and Sun“, Soviet Astronomy, 7 (5): 618–622, Bibcode:1964SvA.....7..618C
  4. 4,0 4,1 NASA – Imagine the Universe: The Nearest Star
  5. 5,0 5,1 5,2 Frequently Asked Questions About General Astronomy
  6. Barycentric solution for 2004 R2
  7. Barycentric solution for 2015 O1
  8. Barycentric solution for 2012 S4
  9. Horizons output. „Barycentric Osculating Orbital Elements for Comet C/1975 V1-A (West)“. Qaraldi: 2011-yil 1-fevral. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
  10. Horizons output. „Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)“. Qaraldi: 2011-yil 7-mart. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  11. Horizons output. „Barycentric Osculating Orbital Elements for Comet C/2012 S4 (PANSTARRS)“. Qaraldi: 2015-yil 26-sentyabr. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  12. Horizons output. „Barycentric Osculating Orbital Elements for Comet Hyakutake (C/1996 B2)“ (2011-yil 30-yanvar). Qaraldi: 2011-yil 30-yanvar. (Horizons)
  13. Horizons output. „Barycentric Osculating Orbital Elements for Comet C/1910 A1 (Great January comet)“. Qaraldi: 2011-yil 7-fevral. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  14. Horizons output. „Barycentric Osculating Orbital Elements for Comet C/1992 J1 (Spacewatch)“. Qaraldi: 2012-yil 7-oktyabr. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  15. Horizons output. „Barycentric Osculating Orbital Elements for Comet Lulin (C/2007 N3)“. Qaraldi: 2011-yil 30-yanvar. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
  16. Manba xatosi: Invalid <ref> tag; no text was provided for refs named :0
[tahrir | manbasini tahrirlash]