Kontent qismiga oʻtish

Oraliq metall nitril kompleksi

Vikipediya, ochiq ensiklopediya
[Cu(MeCN) 4 ] +, tez-tez PF 6 - tuzi sifatida uchraydi, keng tarqalgan oʻtish metall nitril kompleksidir.

Oʻtish metallining nitril komplekslari nitril ligandlarini oʻz ichiga olgan koordinatsion birikmalardir . Nitrillar zaif asosli boʻlganligi sababli, bu komplekslardagi nitril ligandlari koʻpincha labildir .[1]

Nitrillarning qoʻllanishi

[tahrir | manbasini tahrirlash]

Odatda nitril ligandlari asetonitril, propionitril va benzonitrildir . [Ru(NH3)5 (NCPh)] n+ tuzilmalari 2+ va 3+ oksidlanish darajalari uchun aniqlangan. Oksidlanishdan keyin Ru-NH 3 masofalari qisqaradi va Ru-NCPh masofalari uzayadi, bu sof sigma donor ligandlari vazifasini bajaradigan aminlar va pi-akseptorlari sifatida ishlaydigan nitrillarga mos keladi.[2]

2+ va 3+ tuzlar uchun [Ru(NH 3 ) 5 (NCPh)] n+ ning strukturaviy taqqoslashlari (pikometrlardagi masofa)

Sintez va reaksiyalar

[tahrir | manbasini tahrirlash]

Asetonitril, propionitril va benzonitril ham mashhur erituvchilardir. Nitril erituvchilar yuqori dielektrik oʻtkazuvchanlikka ega boʻlganligi sababli, nitril ligandini oʻz ichiga olgan katyonik komplekslar koʻpincha ushbu nitril eritmasida eriydi.

Ayrim komplekslarni suvsiz metall tuzini nitrilda eritib tayyorlash mumkin. Boshqa hollarda, metall suspenziyasi nitrildagi NOBF <sub id="mwKw">4</sub> eritmasi bilan oksidlanadi:[3]

Ni + 6 MeCN + 2 NOBF 4 → [Ni(MeCN) 6 ](BF 4 ) 2 + 2 NO

Molibden va volframning geteroleptik komplekslari ularning tegishli geksakarbonil komplekslaridan sintezlanishi mumkin.[4]

M(CO) 6 + 4 MeCN + 2 NOBF 4 → [M(NO) 2 (MeCN) 4 ](BF 4 ) 2
[Ni(MeCN) 6 ] 2+ [5] ning tetraklorozinkat (ZnCl 4 2− ) tuzi strukturasining qismi.

Ayrim asetonitril komplekslarini sintez qilish uchun nitril qaytaruvchi vazifasini bajaradi. Bu usul molibden pentakloridning molibden (IV) kompleksiga aylanishi bilan tasvirlangan:[6]

2 MoCl 5 + 5 CH 3 CN → 2 MoCl 4 (CH 3 CN) 2 + ClCH 2 CN + HCl

Oʻtish metallining nitril komplekslari odatda qoʻllanadi, chunki nitril ligand labil va nisbatan kimyoviy inertdir. Biroq, katyonik nitril komplekslari uglerodga nukleofil hujumga moyil. Shunday qilib, baʼzi nitril komplekslari amidlarni berish uchun nitrillarning gidrolizlanishini katalizlaydi.[7]

Fe- va Co-nitril komplekslari nitrilgidrataz fermentlarining oraliq mahsulotidir. N-koordinatsiyasi sp-gibridlangan uglerod markazini nukleofillar, shu jumladan suv tomonidan hujumga olib keladi.[8] Shunday qilib, nitrilning katyonik metall markaziga koordinatsiyasi katalitik gidratsiya uchun asosdir:

M-NCR + H 2 O → MO=C(NH 2 )R
MO=C(NH 2 )R + NCR → O=C(NH 2 )R + M-NCR

[M(NCMe) 6 ] n+

[tahrir | manbasini tahrirlash]
  • Hexakis(asetonitril)vanadiy(II) tetraxlorzinkat ([V(MeCN) 6 ](ZnCl 4 ) 2 ), yashil [9]
  • Hexakis(asetonitril)xrom(II) bis(tetrafenilborat) ([Cr(MeCN) 6 ](B(C 6 H 5 ) 4 ) 2, yashil [10]
  • Hexakis(asetonitril)xrom(III) tetrafloroborat ([Cr(MeCN) 6 ](BF 4 ) 3 ), oq [11]
  • Hexakis(asetonitril)temir(II) bis(tetrakis(pentaflorofenil)borat) ([Fe(MeCN) 6 ](B(C 6 F 5 ) 4 ) 2, apelsin [12]
  • Hexakis(asetonitril)kobalt(II) bis(tetrakis(pentafluorofenil)borat) ([Co(MeCN) 6 ](B(C 6 F 5 ) 4 ) 2, binafsha [13]
  • Hexakis(asetonitril)nikel(II) tetrafloroborat ([Ni(MeCN) 6 ](BF 4 ) 2 ), koʻk
  • Hexakis(asetonitril)mis(II) bis(tetrakis(pentaflorofenil)borat) ([Cu(MeCN) 6 ](B(C 6 F 5 ) 4 ) 2, och koʻk-yashil qattiq [14]
  • Hexakis(asetonitril)rutenium (II) tetrafloroborat ([Ru(MeCN) 6 ](BF 4 ) 2 ), oq, d Ru-N = 202 pm.[15]
  • Hexakis(asetonitril)rodiy(III) tetrafloroborat ([Rh(MeCN) 6 ](BF 4 ) 3 ), sariq rangli qattiq modda.[16]

[M(NCMe) 4 ] n+

[tahrir | manbasini tahrirlash]
  • [Cr(MeCN) 4 ](BF 4 ) 2, koʻk [17]
  • [Cu(MeCN) <sub id="mwsw">4</sub> ]PF <sub id="mwtA">6</sub>, rangsiz
  • [Pd(MeCN) 4 ](BF 4 ) 2, sariq [18]

[M(NCMe) 4 yoki 5 ] 2 n+

[tahrir | manbasini tahrirlash]
  • [Mo 2 (MeCN) 8/10 ](BF 4 ) 4 koʻk d(Mo-Mo) = 218, d(Mo-N) eksenel = 260, d(Mo-N) tenglama = 214 pm [19]
  • [Tc 2 (MeCN) 10 ](BF 4 ) 4 [20]
  • [Re 2 (MeCN) 10 ][B(C 6 H 3 (CF 3 ) 2 ) 4 ] 2,[21] koʻk; d(Re-Re) = 226, d(Re-N) eksenel = 240, d(Re-N) tenglama = 205 pm
  • [Rh 2 (MeCN) 10 ](BF 4 ) 4, apelsin; d(Rh-Rh) = 261, d(Re-N) eksenel = 219, d(Re-N) tenglama = 198 pm [16]

Boshqa diqqatga sazovor misollar

[tahrir | manbasini tahrirlash]
  • Bis(benzonitril)palladiy diklorid (PdCl 2 (PhCN) 2 ), "PdCl 2 " manbai boʻlib xizmat qiluvchi toʻq sariq rangli qattiq modda.
  • Trikarboniltris(propionitril)molibden(0) (Mo(CO) 3 (C 2 H 5 CN) 3 ), "Mo(CO) 3 " manbai. Tegishli Cr va W komplekslari maʼlum.[22]

2 -nitril ligandlarining komplekslari

[tahrir | manbasini tahrirlash]

Uning ayrim komplekslarida nitrillar 2 -ligandlar vazifasini bajaradi. Bu bogʻlanish rejimi Ni(0) kabi past valentli metallar komplekslari uchun koʻproq uchraydi..2 -nitril komplekslari nitrillarning ba'zi metall katalizlangan reaktsiyalarida, masalan, Hoesch reaktsiyasi va nitrillarning gidrogenatsiyasida vaqtinchalik oraliq mahsulotlar sifatida hosil boʻlishi kutilmoqda. Baʼzi hollarda, 2 -nitril ligandlari oksidlovchi qoʻshilishdan oldin boʻlgan oraliq mahsulotlardir.[23]

Ni( difosfin )(ē 2 - PhCN ) ning tuzilishi [24]
  • Siyanometalat - siyanid ligandlarini oʻz ichiga olgan koordinatsion birikmalar (C orqali muvofiqlashtiruvchi).
  1. Rach, S. F.; Kühn, F. E. (2009). „Nitrile Ligated Transition Metal Complexes with Weakly Coordinating Counteranions and Their Catalytic Applications“. Chemical Reviews. 109-jild, № 5. 2061–2080-bet. doi:10.1021/cr800270h. PMID 19326858.{{cite magazine}}: CS1 maint: multiple names: authors list ()
  2. Shin, Yeung-gyo K.; Szalda, David J.; Brunschwig, Bruce S.; Creutz, Carol; Sutin, Norman (1997). „Electronic and Molecular Structures of Pentaammineruthenium Pyridine and Benzonitrile Complexes as a Function of Oxidation State“. Inorganic Chemistry. 36-jild, № 14. 3190–3197-bet. doi:10.1021/ic9700967. PMID 11669976.
  3. Heintz, Robert A.; Smith, Jennifer A.; Szalay, Paul S.; Weisgerber, Amy; Dunbar, Kim R. (2002). „Homoleptic Transition Metal Acetonitrile Cations with Tetrafluoroborate or Trifluoromethanesulfonate Anions“. Inorg. Synth. 33-jild. 75–83-bet. doi:10.1002/0471224502.ch2.
  4. Thomas, Richard R.; Sen, Ayusman (2007). „Acetonitrile Complexes of Selected Transition Metal Cations“. Inorganic Syntheses. 28-jild. 63–67-bet. doi:10.1002/9780470132593.ch14. ISBN 9780470132593.
  5. I. Sotofte; R. G. Hazell; S. E. Rasmussen (1976). „Hexaacetonitrilenickel(II) Tetrachlorozincate. A Crystal Structure with Serious Overlap in the Patterson Function“. Acta Crystallographica Section B. 32-jild, № 6. 1692–1696-bet. doi:10.1107/S0567740876006249.
  6. Dilworth, Jonathan R. „The Synthesis of Molybdenum and Tungsten Dinitrogen Complexes“, . Inorganic Syntheses, Inorganic Syntheses, 1990 — 33–43-bet. DOI:10.1002/9780470132593.ch7. ISBN 9780470132593. 
  7. Pombeiro, A.J.L. „Reactivity of Coordinated Nitriles“, . Comprehensive Coordination Chemistry II, 2003 — 639–660-bet. DOI:10.1016/B0-08-043748-6/01248-2. ISBN 9780080437484. 
  8. Curtis, Neville J.; Sargeson, Alan M. (1984). „Synthesis and base hydrolysis of pentaammine N,N-dimethylformamide and acetonitrile complexes of rhodium(III) and iridium(III)“. Journal of the American Chemical Society. 106-jild, № 3. 625–630-bet. doi:10.1021/ja00315a029.
  9. Clemente, Dore Augusto (2005). „A Study of the 8466 Structures Reported in Inorganica Chimica Acta: 52 Space Group Changes and Their Chemical Consequences“. Inorganica Chimica Acta. 358-jild, № 6. 1725–1748-bet. doi:10.1016/j.ica.2004.10.037.
  10. Thangavel, Arumugam; Wieliczko, Marika; Scarborough, Christopher; Dittrich, Birger; Bacsa, John (2015). „An Investigation of the Electron Density of a Jahn–Teller-Distorted CrII Cation: The Crystal Structure and Charge Density of Hexakis(acetonitrile-κN)chromium(II) Bis(tetraphenylborate) Acetonitrile Disolvate“. Acta Crystallographica Section C Structural Chemistry. 71-jild, № 11. 936–943-bet. doi:10.1107/S2053229615015739. PMID 26524164.
  11. Hatlevik, Øyvind; Arif, Atta M.; Miller, Joel S. (2004). „Synthesis and Characterization of Hexakis(acetonitrile)chromium(III) Tetrafluoroborate, [CrIII(NCMe)6][BF4]3. A Nonaqueous CrIII Source“. Journal of Physics and Chemistry of Solids. 65-jild. 61–63-bet. doi:10.1016/j.jpcs.2003.08.020.
  12. Musgrave, Rebecca A.; Hailes, Rebekah L. N.; Schäfer, André; Russell, Andrew D.; Gates, Paul J.; Manners, Ian (2018). „New Reactivity at the Silicon Bridge in Sila[1]ferrocenophanes“ (PDF). Dalton Transactions. 47-jild, № 8. 2759–2768-bet. doi:10.1039/C7DT04593J. PMID 29417116.
  13. Hijazi, Ahmed K.; Al Hmaideen, Akef; Syukri, Syukri; Radhakrishnan, Narayanan; Herdtweck, Eberhardt; Voit, Brigitte; Kühn, Fritz E. (2008). „Synthesis and Characterization of Acetonitrile-Ligated Transition-Metal Complexes with Tetrakis(pentafluorophenyl)borate as Counteranions“. European Journal of Inorganic Chemistry. 2008-jild, № 18. 2892–2898-bet. doi:10.1002/ejic.200800201.
  14. Hijazi, Ahmed K.; Yeong, Hui Y.; Zhang, Yanmei; Herdtweck, Eberhardt; Nuyken, Oskar; Kühn, Fritz E. (2007). „Isobutene Polymerization Using [CuII(NCMe)6]2+ with Non-Coordinating Anions as Catalysts“. Macromolecular Rapid Communications. 28-jild, № 5. 670–675-bet. doi:10.1002/marc.200600139.
  15. Underwood, Christopher C.; Stadelman, Bradley S.; Sleeper, Mark L.; Brumaghim, Julia L. (2013). „Synthesis and Electrochemical characterization of [Ru(NCCH3)6]2+, Tris(acetonitrile) Tris(pyrazolyl)borate, and Tris(acetonitrile) Tris(pyrazolyl)methane Ruthenium(II) Complexes“. Inorganica Chimica Acta. 405-jild. 470–476-bet. doi:10.1016/j.ica.2013.02.027.
  16. 16,0 16,1 Prater, M. E.; Pence, L. E.; Clérac, R.; Finniss, G. M.; Campana, C.; Auban-Senzier, P.; Jérome, D.; Canadell, E.; Dunbar, K. R. (1999). „A Remarkable Family of Rhodium Acetonitrile Compounds Spanning Three Oxidation States and with Nuclearities Ranging from Mononuclear and Dinuclear to One-Dimensional Chains“. Journal of the American Chemical Society. 121-jild, № 35. 8005–8016-bet. doi:10.1021/ja991130e.
  17. Henriques, Rui T.; Herdtweck, Eberhardt; Kühn, Fritz E.; Lopes, André D.; Mink, Janos; Romão, Carlos C. (1998). „Synthesis, characterization, and reactions of tetrakis(nitrile)chromium(II) tetrafluoroborate complexes †“. Journal of the Chemical Society, Dalton Transactions. № 8. 1293–1298-bet. doi:10.1039/A708988K.
  18. Thomas, Richard R. „Acetonitrile Complexes of Selected Transition Metal Cations“, . Inorganic Syntheses, Inorganic Syntheses, 1990 — 63–67-bet. DOI:10.1002/9780470132593.ch14. ISBN 9780470132593. 
  19. Cotton, F. Albert.; Wiesinger, Kenneth J. (1991). „Synthesis and characterization of octaacetonitriledimolybdenum(II) tetrafluoroborate“. Inorganic Chemistry. 30-jild, № 4. 871–873-bet. doi:10.1021/ic00004a055.
  20. Bryan, Jeffrey C.; Cotton, F. Albert; Daniels, Lee M.; Haefner, Steven C.; Sattelberger, Alfred P. (1995). „Preparation and Characterization of the Fully Solvated Ditechnetium Cation [Tc2(CH3CN)10]4+“. Inorganic Chemistry. 34-jild, № 7. 1875–1883-bet. doi:10.1021/ic00111a040.
  21. Bera, Jitendra K.; Schelter, Eric J.; Patra, Sanjib K.; Bacsa, John; Dunbar, Kim R. (2006). „Syntheses and Reactivity Studies of Solvated Dirhenium Acetonitrile Complexes“. Dalton Transactions. № 33. 4011–9-bet. doi:10.1039/b601463a. PMID 17028710.
  22. Kubas, Gregory J. „Tricarbonyltris(Nitrile) Complexes of Cr, Mo, and W“, . Inorganic Syntheses, Inorganic Syntheses, 1990 — 29–33-bet. DOI:10.1002/9780470132593.ch6. ISBN 9780470132593. 
  23. Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.; Bridgewater, B. M.; Parkin, G. (1999). „The Ansa Effect in Permethylmolybdenocene Chemistry: A [Me2Si] Ansa Bridge Promotes Intermolecular C−H and C−C Bond Activation“. Organometallics. 18-jild. 2403–2406-bet. doi:10.1021/om990195n.
  24. García, J. J.; Arévalo, A.; Brunkan, N. M.; Jones, W. D. (2004). „Cleavage of Carbon−Carbon Bonds in Alkyl Cyanides Using Nickel(0)“. Organometallics. 23-jild, № 16. 3997–4002-bet. doi:10.1021/om049700t.{{cite magazine}}: CS1 maint: multiple names: authors list ()