Kontent qismiga oʻtish

Umumiy kuchlar

Vikipediya, erkin ensiklopediya

Analitik mexanikada (ayniqsa , Lagranj mexanikasida) umumlashgan kuchlar umumlashtirilgan koordinatalar bilan koʻpaytiriladi. Ular konfiguratsiyasi umumlashtirilgan koordinatalar boʻyicha aniqlangan tizimga taʼsir qiluvchi Fi, i = 1, …, n qoʻllaniladigan kuchlardan olinadi. Virtual ishni shakllantirishda har bir umumlashtirilgan kuch umumlashtirilgan koordinataning oʻzgarish koeffitsienti hisoblanadi.

Umumlashtirilgan kuchlarni qoʻllaniladigan kuchlarning virtual ishini- δW hisoblashdan olish mumkin[1].

Pi, i = 1, ..., n zarralarga taʼsir etuvchi Fi kuchlarning virtual ishi quyidagicha ifodalanadi:

Bu yerda δri — Pi zarrachaning virtual siljishi .

Umumiy koordinatalar

[tahrir | manbasini tahrirlash]

Har bir zarrachaning joylashuv vektorlari ri umumlashtirilgan koordinatalarning funksiyasi boʻlsin, qj, j = 1, ..., m . Keyin virtual siljishlar δri tomonidan beriladi:

Bu yerda δqj — umumlashtirilgan koordinata qj ning virtual siljishi.

Zarrachalar tizimi uchun virtual ish boʻladi

δqj koeffitsientlarini shunday yigʻiladi:

Umumiy kuchlar

[tahrir | manbasini tahrirlash]

Zarrachalar sistemasining virtual ishi shaklda yozilishi mumkin

bu yerda

umumlashgan koordinatalar qj, j = 1, ..., m bilan bogʻlangan umumlashgan kuchlar deyiladi.

Tezlikni shakllantirish

[tahrir | manbasini tahrirlash]

Virtual ish prinsipini qoʻllashda koʻpincha tizimning tezligidan virtual siljishlarni olish qulay. n zarracha sistemasi uchun har bir P i zarraning tezligi Vi boʻlsin, u holda virtual siljish δri koʻrinishda ham yozilishi mumkin[2]:

Demak, umumlashgan kuch Qj ham quyidagicha aniqlash mumkin

D’Alember prinsipi

[tahrir | manbasini tahrirlash]

D’Alember zarrachaning dinamikasini D’Alember prinsipi deb ataladigan inertsiya kuchi (koʻrinadigan kuch) bilan qoʻllaniladigan kuchlarning muvozanati sifatida shakllantirdi. mi massali zarrachaning inertsiya kuchi Pi

bu yerda Ai zarrachaning tezlanishi.

Agar zarralar tizimining konfiguratsiyasi umumlashtirilgan koordinatalarga bogʻliq boʻlsa qj, j = 1, ..., m, u holda umumlashtirilgan inersiya kuchi quyidagicha ifodalanadi:

D’Alembertning virtual ish rentabelligi prinsipi shakli:

  1. Torby, Bruce „Energy Methods“, . Advanced Dynamics for Engineers, HRW Series in Mechanical Engineering. United States of America: CBS College Publishing, 1984. ISBN 0-03-063366-4. 
  2. T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.