MIkrozarrachalarning erkin harakati
Fizikada erkin zarracha — bu qandaydir maʼnoda tashqi kuch bilan bogʻlanmagan yoki potensial energiyasi oʻzgaruvchan mintaqada ekvivalent boʻlmagan zarracha. Klassik fizikada bu zarrachaning „erkin“ fazoda mavjudligini bildiradi. Kvant mexanikasida bu zarracha bir xil potensial mintaqasida ekanligini anglatadi, odatda qiziqish mintaqasida nolga oʻrnatiladi, chunki kosmosning istalgan nuqtasida potensial oʻzboshimchalik bilan nolga oʻrnatilishi mumkin.
Klassik erkin zarracha
[tahrir | manbasini tahrirlash]Klassik erkin zarracha qattiq v tezligi bilan tavsiflanadi. Impuls tomonidan berilgan
va kinetik energiya (umumiy energiyaga teng) tomonidan
Bu yerda m — zarrachaning massasi va v — zarraning vektor tezligi.
Kvant erkin zarracha
[tahrir | manbasini tahrirlash]Matematik tavsif
[tahrir | manbasini tahrirlash]massali erkin zarracha Relyativistik boʻlmagan kvant mexanikasida erkin Shredinger tenglamasi bilan tavsiflanadi:
bu yerda ψ — zarrachaning r pozitsiyasi va t vaqtidagi toʻlqin funksiyasi. Impuls momenti p yoki toʻlqin vektori k, burchak chastotasi ω yoki energiya E boʻlgan zarracha uchun yechim kompleks tekislik toʻlqini bilan beriladi:
amplituda A bilan va quyidagilar bilan cheklangan:
- agar zarracha massaga ega boʻlsa : (yoki ekvivalenti ).
- agar zarra massasiz zarra boʻlsa: .
Xususiy qiymat spektri cheksiz degeneratsiyaga ega, chunki har bir xos qiymat E >0 uchun turli yoʻnalishlarga toʻgʻri keladigan cheksiz sonli xos funksiyalar mos keladi.
De Broyl munosabatlari : , . Potensial energiya nolga teng boʻlgani sababli, umumiy energiya E klassik fizikada boʻlgani kabi bir xil shaklga ega boʻlgan kinetik energiyaga teng:
Erkin yoki bogʻlangan barcha kvant zarralariga kelsak, Geyzenberg noaniqlik prinsipi . Koʻrinib turibdiki, tekis toʻlqin maʼlum impulsga (aniq energiya) ega boʻlgani sababli, zarrachaning joylashishini topish ehtimoli butun fazoda bir xil va ahamiyatsiz. Boshqacha qilib aytadigan boʻlsak, Evklid fazosida toʻlqin funksiyasini normallashtirish mumkin emas, bu statsionar holatlar jismoniy amalga oshirilishi mumkin boʻlgan holatlarga mos kelmaydi.
Oʻlchov va hisob-kitoblar
[tahrir | manbasini tahrirlash]Ehtimollar zichligi funksiyasining integrali:
Bu yerda * kompleks qoʻshmani bildiradi, butun fazoda zarrachani barcha fazoda topish ehtimoli, agar zarra mavjud boʻlsa, bir boʻlishi kerak:
Bu toʻlqin funksiyasi uchun normalizatsiya shartidir. Toʻlqin funksiyasi tekis toʻlqin uchun normallashtirilmaydi, lekin toʻlqin paketi uchunqilinishi mumkin.
Furye metodi
[tahrir | manbasini tahrirlash]Erkin zarracha toʻlqin funksiyasi impulsning xos funksiyalarining superpozitsiyasi bilan ifodalanishi mumkin, koeffitsientlar dastlabki toʻlqin funksiyasining Furye konvertatsiyasi bilan berilgan:
bu yerda integral barcha k-fazoda va (toʻlqin paketining erkin zarracha Shredinger tenglamasining yechimi boʻlishini taʼminlash uchun). Bu yerda toʻlqin funksiyasining 0 va maʼlum vaqtdagi qiymati ning Furye almashtirishi hisoblanadi. (Furye almashtirishi mohiyatan pozitsiya toʻlqin funksiyasining impuls toʻlqin funksiyasi , lekin funksiyasi sifatida yoziladi dan koʻra )
Murakkab tekislik toʻlqini uchun impuls p ning kutilgan qiymati:
va umumiy toʻlqin paketi uchun bu:
E energiyaning kutilgan qiymati:
Manbalar
[tahrir | manbasini tahrirlash]- G.Ahmedova „Atom fizikasi“
- M.Nishonov „OʻzMU fizika maʼruzalari“
Bu maqola birorta turkumga qoʻshilmagan. Iltimos, maqolaga aloqador turkumlar qoʻshib yordam qiling. (Aprel 2024) |